3.2.6 \(\int \frac {d+e x+f x^2+g x^3}{(a+b x^2+c x^4)^{3/2}} \, dx\) [106]

Optimal. Leaf size=447 \[ \frac {x \left (b^2 d-2 a c d-a b f+c (b d-2 a f) x^2\right )}{a \left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}-\frac {b e-2 a g+(2 c e-b g) x^2}{\left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}-\frac {\sqrt {c} (b d-2 a f) x \sqrt {a+b x^2+c x^4}}{a \left (b^2-4 a c\right ) \left (\sqrt {a}+\sqrt {c} x^2\right )}+\frac {\sqrt [4]{c} (b d-2 a f) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{a^{3/4} \left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}-\frac {\left (\sqrt {c} d-\sqrt {a} f\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{2 a^{3/4} \left (b-2 \sqrt {a} \sqrt {c}\right ) \sqrt [4]{c} \sqrt {a+b x^2+c x^4}} \]

[Out]

x*(b^2*d-2*a*c*d-a*b*f+c*(-2*a*f+b*d)*x^2)/a/(-4*a*c+b^2)/(c*x^4+b*x^2+a)^(1/2)+(-b*e+2*a*g-(-b*g+2*c*e)*x^2)/
(-4*a*c+b^2)/(c*x^4+b*x^2+a)^(1/2)-(-2*a*f+b*d)*x*c^(1/2)*(c*x^4+b*x^2+a)^(1/2)/a/(-4*a*c+b^2)/(a^(1/2)+x^2*c^
(1/2))+c^(1/4)*(-2*a*f+b*d)*(cos(2*arctan(c^(1/4)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(c^(1/4)*x/a^(1/4)))*Ellipt
icE(sin(2*arctan(c^(1/4)*x/a^(1/4))),1/2*(2-b/a^(1/2)/c^(1/2))^(1/2))*(a^(1/2)+x^2*c^(1/2))*((c*x^4+b*x^2+a)/(
a^(1/2)+x^2*c^(1/2))^2)^(1/2)/a^(3/4)/(-4*a*c+b^2)/(c*x^4+b*x^2+a)^(1/2)-1/2*(cos(2*arctan(c^(1/4)*x/a^(1/4)))
^2)^(1/2)/cos(2*arctan(c^(1/4)*x/a^(1/4)))*EllipticF(sin(2*arctan(c^(1/4)*x/a^(1/4))),1/2*(2-b/a^(1/2)/c^(1/2)
)^(1/2))*(-f*a^(1/2)+d*c^(1/2))*(a^(1/2)+x^2*c^(1/2))*((c*x^4+b*x^2+a)/(a^(1/2)+x^2*c^(1/2))^2)^(1/2)/a^(3/4)/
c^(1/4)/(b-2*a^(1/2)*c^(1/2))/(c*x^4+b*x^2+a)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.17, antiderivative size = 447, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 32, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.219, Rules used = {1687, 1192, 1211, 1117, 1209, 1261, 650} \begin {gather*} \frac {\sqrt [4]{c} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} (b d-2 a f) E\left (2 \text {ArcTan}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{a^{3/4} \left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}-\frac {\left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \left (\sqrt {c} d-\sqrt {a} f\right ) F\left (2 \text {ArcTan}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{2 a^{3/4} \sqrt [4]{c} \left (b-2 \sqrt {a} \sqrt {c}\right ) \sqrt {a+b x^2+c x^4}}-\frac {\sqrt {c} x \sqrt {a+b x^2+c x^4} (b d-2 a f)}{a \left (b^2-4 a c\right ) \left (\sqrt {a}+\sqrt {c} x^2\right )}+\frac {x \left (c x^2 (b d-2 a f)-a b f-2 a c d+b^2 d\right )}{a \left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}-\frac {-2 a g+x^2 (2 c e-b g)+b e}{\left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d + e*x + f*x^2 + g*x^3)/(a + b*x^2 + c*x^4)^(3/2),x]

[Out]

(x*(b^2*d - 2*a*c*d - a*b*f + c*(b*d - 2*a*f)*x^2))/(a*(b^2 - 4*a*c)*Sqrt[a + b*x^2 + c*x^4]) - (b*e - 2*a*g +
 (2*c*e - b*g)*x^2)/((b^2 - 4*a*c)*Sqrt[a + b*x^2 + c*x^4]) - (Sqrt[c]*(b*d - 2*a*f)*x*Sqrt[a + b*x^2 + c*x^4]
)/(a*(b^2 - 4*a*c)*(Sqrt[a] + Sqrt[c]*x^2)) + (c^(1/4)*(b*d - 2*a*f)*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + b*x^2 +
 c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticE[2*ArcTan[(c^(1/4)*x)/a^(1/4)], (2 - b/(Sqrt[a]*Sqrt[c]))/4])/(a^(
3/4)*(b^2 - 4*a*c)*Sqrt[a + b*x^2 + c*x^4]) - ((Sqrt[c]*d - Sqrt[a]*f)*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + b*x^2
 + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticF[2*ArcTan[(c^(1/4)*x)/a^(1/4)], (2 - b/(Sqrt[a]*Sqrt[c]))/4])/(2
*a^(3/4)*(b - 2*Sqrt[a]*Sqrt[c])*c^(1/4)*Sqrt[a + b*x^2 + c*x^4])

Rule 650

Int[((d_.) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[-2*((b*d - 2*a*e + (2*c*
d - b*e)*x)/((b^2 - 4*a*c)*Sqrt[a + b*x + c*x^2])), x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[2*c*d - b*e, 0] &&
NeQ[b^2 - 4*a*c, 0]

Rule 1117

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(
a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^2 + c*x^4]))*EllipticF[2*ArcTan[q*x], 1/2 - b*(q^2/(
4*c))], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1192

Int[((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[x*(a*b*e - d*(b^2 - 2*a
*c) - c*(b*d - 2*a*e)*x^2)*((a + b*x^2 + c*x^4)^(p + 1)/(2*a*(p + 1)*(b^2 - 4*a*c))), x] + Dist[1/(2*a*(p + 1)
*(b^2 - 4*a*c)), Int[Simp[(2*p + 3)*d*b^2 - a*b*e - 2*a*c*d*(4*p + 5) + (4*p + 7)*(d*b - 2*a*e)*c*x^2, x]*(a +
 b*x^2 + c*x^4)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e
^2, 0] && LtQ[p, -1] && IntegerQ[2*p]

Rule 1209

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(
-d)*x*(Sqrt[a + b*x^2 + c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 +
 q^2*x^2)^2)]/(q*Sqrt[a + b*x^2 + c*x^4]))*EllipticE[2*ArcTan[q*x], 1/2 - b*(q^2/(4*c))], x] /; EqQ[e + d*q^2,
 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1211

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(
e + d*q)/q, Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] - Dist[e/q, Int[(1 - q*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x]
/; NeQ[e + d*q, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1261

Int[(x_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[
Int[(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x]

Rule 1687

Int[(Pq_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], k}, Int[Sum[Coeff[
Pq, x, 2*k]*x^(2*k), {k, 0, q/2}]*(a + b*x^2 + c*x^4)^p, x] + Int[x*Sum[Coeff[Pq, x, 2*k + 1]*x^(2*k), {k, 0,
(q - 1)/2}]*(a + b*x^2 + c*x^4)^p, x]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] &&  !PolyQ[Pq, x^2]

Rubi steps

\begin {align*} \int \frac {d+e x+f x^2+g x^3}{\left (a+b x^2+c x^4\right )^{3/2}} \, dx &=\int \frac {d+f x^2}{\left (a+b x^2+c x^4\right )^{3/2}} \, dx+\int \frac {x \left (e+g x^2\right )}{\left (a+b x^2+c x^4\right )^{3/2}} \, dx\\ &=\frac {x \left (b^2 d-2 a c d-a b f+c (b d-2 a f) x^2\right )}{a \left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}+\frac {1}{2} \text {Subst}\left (\int \frac {e+g x}{\left (a+b x+c x^2\right )^{3/2}} \, dx,x,x^2\right )-\frac {\int \frac {a (2 c d-b f)+c (b d-2 a f) x^2}{\sqrt {a+b x^2+c x^4}} \, dx}{a \left (b^2-4 a c\right )}\\ &=\frac {x \left (b^2 d-2 a c d-a b f+c (b d-2 a f) x^2\right )}{a \left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}-\frac {b e-2 a g+(2 c e-b g) x^2}{\left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}+\frac {\left (\sqrt {c} (b d-2 a f)\right ) \int \frac {1-\frac {\sqrt {c} x^2}{\sqrt {a}}}{\sqrt {a+b x^2+c x^4}} \, dx}{\sqrt {a} \left (b^2-4 a c\right )}-\frac {\left (\sqrt {c} (b d-2 a f)+\sqrt {a} (2 c d-b f)\right ) \int \frac {1}{\sqrt {a+b x^2+c x^4}} \, dx}{\sqrt {a} \left (b^2-4 a c\right )}\\ &=\frac {x \left (b^2 d-2 a c d-a b f+c (b d-2 a f) x^2\right )}{a \left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}-\frac {b e-2 a g+(2 c e-b g) x^2}{\left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}-\frac {\sqrt {c} (b d-2 a f) x \sqrt {a+b x^2+c x^4}}{a \left (b^2-4 a c\right ) \left (\sqrt {a}+\sqrt {c} x^2\right )}+\frac {\sqrt [4]{c} (b d-2 a f) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{a^{3/4} \left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}-\frac {\left (\sqrt {c} d-\sqrt {a} f\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{2 a^{3/4} \left (b-2 \sqrt {a} \sqrt {c}\right ) \sqrt [4]{c} \sqrt {a+b x^2+c x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 10.98, size = 513, normalized size = 1.15 \begin {gather*} -\frac {4 \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} \left (-2 a^2 g-b d x \left (b+c x^2\right )+2 a c x (d+x (e+f x))+a b (e+x (f-g x))\right )+i \left (-b+\sqrt {b^2-4 a c}\right ) (b d-2 a f) \sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x^2}{b+\sqrt {b^2-4 a c}}} \sqrt {\frac {2 b-2 \sqrt {b^2-4 a c}+4 c x^2}{b-\sqrt {b^2-4 a c}}} E\left (i \sinh ^{-1}\left (\sqrt {2} \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} x\right )|\frac {b+\sqrt {b^2-4 a c}}{b-\sqrt {b^2-4 a c}}\right )-i \left (-b^2 d+4 a c d+b \sqrt {b^2-4 a c} d-2 a \sqrt {b^2-4 a c} f\right ) \sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x^2}{b+\sqrt {b^2-4 a c}}} \sqrt {\frac {2 b-2 \sqrt {b^2-4 a c}+4 c x^2}{b-\sqrt {b^2-4 a c}}} F\left (i \sinh ^{-1}\left (\sqrt {2} \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} x\right )|\frac {b+\sqrt {b^2-4 a c}}{b-\sqrt {b^2-4 a c}}\right )}{4 a \left (b^2-4 a c\right ) \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} \sqrt {a+b x^2+c x^4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x + f*x^2 + g*x^3)/(a + b*x^2 + c*x^4)^(3/2),x]

[Out]

-1/4*(4*Sqrt[c/(b + Sqrt[b^2 - 4*a*c])]*(-2*a^2*g - b*d*x*(b + c*x^2) + 2*a*c*x*(d + x*(e + f*x)) + a*b*(e + x
*(f - g*x))) + I*(-b + Sqrt[b^2 - 4*a*c])*(b*d - 2*a*f)*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^2)/(b + Sqrt[b^2 -
 4*a*c])]*Sqrt[(2*b - 2*Sqrt[b^2 - 4*a*c] + 4*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]*EllipticE[I*ArcSinh[Sqrt[2]*Sqrt
[c/(b + Sqrt[b^2 - 4*a*c])]*x], (b + Sqrt[b^2 - 4*a*c])/(b - Sqrt[b^2 - 4*a*c])] - I*(-(b^2*d) + 4*a*c*d + b*S
qrt[b^2 - 4*a*c]*d - 2*a*Sqrt[b^2 - 4*a*c]*f)*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])]*
Sqrt[(2*b - 2*Sqrt[b^2 - 4*a*c] + 4*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]*EllipticF[I*ArcSinh[Sqrt[2]*Sqrt[c/(b + Sq
rt[b^2 - 4*a*c])]*x], (b + Sqrt[b^2 - 4*a*c])/(b - Sqrt[b^2 - 4*a*c])])/(a*(b^2 - 4*a*c)*Sqrt[c/(b + Sqrt[b^2
- 4*a*c])]*Sqrt[a + b*x^2 + c*x^4])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(1004\) vs. \(2(440)=880\).
time = 0.05, size = 1005, normalized size = 2.25

method result size
elliptic \(-\frac {2 c \left (-\frac {\left (2 f a -b d \right ) x^{3}}{2 a \left (4 a c -b^{2}\right )}+\frac {\left (b g -2 c e \right ) x^{2}}{2 c \left (4 a c -b^{2}\right )}-\frac {\left (a b f +2 a c d -b^{2} d \right ) x}{2 a c \left (4 a c -b^{2}\right )}+\frac {2 a g -e b}{2 \left (4 a c -b^{2}\right ) c}\right )}{\sqrt {\left (x^{4}+\frac {b \,x^{2}}{c}+\frac {a}{c}\right ) c}}+\frac {\left (\frac {d}{a}-\frac {a b f +2 a c d -b^{2} d}{a \left (4 a c -b^{2}\right )}\right ) \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \EllipticF \left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )}{4 \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}}+\frac {c \left (2 f a -b d \right ) \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \left (\EllipticF \left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )-\EllipticE \left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )\right )}{2 \left (4 a c -b^{2}\right ) \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}\, \left (b +\sqrt {-4 a c +b^{2}}\right )}\) \(565\)
default \(-\frac {g \left (b \,x^{2}+2 a \right )}{\sqrt {c \,x^{4}+b \,x^{2}+a}\, \left (4 a c -b^{2}\right )}+f \left (-\frac {2 c \left (-\frac {x^{3}}{4 a c -b^{2}}-\frac {b x}{2 \left (4 a c -b^{2}\right ) c}\right )}{\sqrt {\left (x^{4}+\frac {b \,x^{2}}{c}+\frac {a}{c}\right ) c}}-\frac {b \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \EllipticF \left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )}{4 \left (4 a c -b^{2}\right ) \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}}+\frac {c a \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \left (\EllipticF \left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )-\EllipticE \left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )\right )}{\left (4 a c -b^{2}\right ) \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}\, \left (b +\sqrt {-4 a c +b^{2}}\right )}\right )+\frac {e \left (2 c \,x^{2}+b \right )}{\sqrt {c \,x^{4}+b \,x^{2}+a}\, \left (4 a c -b^{2}\right )}+d \left (-\frac {2 c \left (\frac {b \,x^{3}}{2 a \left (4 a c -b^{2}\right )}-\frac {\left (2 a c -b^{2}\right ) x}{2 a \left (4 a c -b^{2}\right ) c}\right )}{\sqrt {\left (x^{4}+\frac {b \,x^{2}}{c}+\frac {a}{c}\right ) c}}+\frac {\left (\frac {1}{a}-\frac {2 a c -b^{2}}{a \left (4 a c -b^{2}\right )}\right ) \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \EllipticF \left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )}{4 \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}}-\frac {b c \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \left (\EllipticF \left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )-\EllipticE \left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )\right )}{2 \left (4 a c -b^{2}\right ) \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}\, \left (b +\sqrt {-4 a c +b^{2}}\right )}\right )\) \(1005\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((g*x^3+f*x^2+e*x+d)/(c*x^4+b*x^2+a)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-g/(c*x^4+b*x^2+a)^(1/2)*(b*x^2+2*a)/(4*a*c-b^2)+f*(-2*c*(-1/(4*a*c-b^2)*x^3-1/2*b/(4*a*c-b^2)/c*x)/((x^4+b/c*
x^2+a/c)*c)^(1/2)-1/4*b/(4*a*c-b^2)*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2)*(4-2*(-b+(-4*a*c+b^2)^(1/2))/a*x
^2)^(1/2)*(4+2*(b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)/(c*x^4+b*x^2+a)^(1/2)*EllipticF(1/2*x*2^(1/2)*((-b+(-4*a*c+
b^2)^(1/2))/a)^(1/2),1/2*(-4+2*b*(b+(-4*a*c+b^2)^(1/2))/a/c)^(1/2))+c/(4*a*c-b^2)*a*2^(1/2)/((-b+(-4*a*c+b^2)^
(1/2))/a)^(1/2)*(4-2*(-b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)*(4+2*(b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)/(c*x^4+b*x^
2+a)^(1/2)/(b+(-4*a*c+b^2)^(1/2))*(EllipticF(1/2*x*2^(1/2)*((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2),1/2*(-4+2*b*(b+(-
4*a*c+b^2)^(1/2))/a/c)^(1/2))-EllipticE(1/2*x*2^(1/2)*((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2),1/2*(-4+2*b*(b+(-4*a*c
+b^2)^(1/2))/a/c)^(1/2))))+e/(c*x^4+b*x^2+a)^(1/2)*(2*c*x^2+b)/(4*a*c-b^2)+d*(-2*c*(1/2/a*b/(4*a*c-b^2)*x^3-1/
2*(2*a*c-b^2)/a/(4*a*c-b^2)/c*x)/((x^4+b/c*x^2+a/c)*c)^(1/2)+1/4*(1/a-(2*a*c-b^2)/a/(4*a*c-b^2))*2^(1/2)/((-b+
(-4*a*c+b^2)^(1/2))/a)^(1/2)*(4-2*(-b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)*(4+2*(b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2
)/(c*x^4+b*x^2+a)^(1/2)*EllipticF(1/2*x*2^(1/2)*((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2),1/2*(-4+2*b*(b+(-4*a*c+b^2)^
(1/2))/a/c)^(1/2))-1/2*b*c/(4*a*c-b^2)*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2)*(4-2*(-b+(-4*a*c+b^2)^(1/2))/
a*x^2)^(1/2)*(4+2*(b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)/(c*x^4+b*x^2+a)^(1/2)/(b+(-4*a*c+b^2)^(1/2))*(EllipticF(
1/2*x*2^(1/2)*((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2),1/2*(-4+2*b*(b+(-4*a*c+b^2)^(1/2))/a/c)^(1/2))-EllipticE(1/2*x
*2^(1/2)*((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2),1/2*(-4+2*b*(b+(-4*a*c+b^2)^(1/2))/a/c)^(1/2))))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x^3+f*x^2+e*x+d)/(c*x^4+b*x^2+a)^(3/2),x, algorithm="maxima")

[Out]

integrate((g*x^3 + f*x^2 + x*e + d)/(c*x^4 + b*x^2 + a)^(3/2), x)

________________________________________________________________________________________

Fricas [A]
time = 0.12, size = 723, normalized size = 1.62 \begin {gather*} -\frac {\sqrt {\frac {1}{2}} {\left (a b^{2} c d - 2 \, a^{2} b c f + {\left (b^{2} c^{2} d - 2 \, a b c^{2} f\right )} x^{4} + {\left (b^{3} c d - 2 \, a b^{2} c f\right )} x^{2} - {\left (a^{2} b c d - 2 \, a^{3} c f + {\left (a b c^{2} d - 2 \, a^{2} c^{2} f\right )} x^{4} + {\left (a b^{2} c d - 2 \, a^{2} b c f\right )} x^{2}\right )} \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}}\right )} \sqrt {a} \sqrt {\frac {a \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} - b}{a}} E(\arcsin \left (\sqrt {\frac {1}{2}} x \sqrt {\frac {a \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} - b}{a}}\right )\,|\,\frac {a b \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} + b^{2} - 2 \, a c}{2 \, a c}) - \sqrt {\frac {1}{2}} {\left ({\left ({\left (2 \, a b + b^{2}\right )} c^{2} d - {\left (a b^{2} c + 2 \, a b c^{2}\right )} f\right )} x^{4} + {\left (2 \, a^{2} b + a b^{2}\right )} c d + {\left ({\left (2 \, a b^{2} + b^{3}\right )} c d - {\left (a b^{3} + 2 \, a b^{2} c\right )} f\right )} x^{2} - {\left (a^{2} b^{2} + 2 \, a^{2} b c\right )} f + {\left ({\left ({\left (2 \, a^{2} - a b\right )} c^{2} d - {\left (a^{2} b c - 2 \, a^{2} c^{2}\right )} f\right )} x^{4} + {\left (2 \, a^{3} - a^{2} b\right )} c d + {\left ({\left (2 \, a^{2} b - a b^{2}\right )} c d - {\left (a^{2} b^{2} - 2 \, a^{2} b c\right )} f\right )} x^{2} - {\left (a^{3} b - 2 \, a^{3} c\right )} f\right )} \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}}\right )} \sqrt {a} \sqrt {\frac {a \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} - b}{a}} F(\arcsin \left (\sqrt {\frac {1}{2}} x \sqrt {\frac {a \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} - b}{a}}\right )\,|\,\frac {a b \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} + b^{2} - 2 \, a c}{2 \, a c}) + 2 \, {\left (a^{2} b c e - 2 \, a^{3} c g - {\left (a b c^{2} d - 2 \, a^{2} c^{2} f\right )} x^{3} + {\left (2 \, a^{2} c^{2} e - a^{2} b c g\right )} x^{2} + {\left (a^{2} b c f - {\left (a b^{2} c - 2 \, a^{2} c^{2}\right )} d\right )} x\right )} \sqrt {c x^{4} + b x^{2} + a}}{2 \, {\left (a^{3} b^{2} c - 4 \, a^{4} c^{2} + {\left (a^{2} b^{2} c^{2} - 4 \, a^{3} c^{3}\right )} x^{4} + {\left (a^{2} b^{3} c - 4 \, a^{3} b c^{2}\right )} x^{2}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x^3+f*x^2+e*x+d)/(c*x^4+b*x^2+a)^(3/2),x, algorithm="fricas")

[Out]

-1/2*(sqrt(1/2)*(a*b^2*c*d - 2*a^2*b*c*f + (b^2*c^2*d - 2*a*b*c^2*f)*x^4 + (b^3*c*d - 2*a*b^2*c*f)*x^2 - (a^2*
b*c*d - 2*a^3*c*f + (a*b*c^2*d - 2*a^2*c^2*f)*x^4 + (a*b^2*c*d - 2*a^2*b*c*f)*x^2)*sqrt((b^2 - 4*a*c)/a^2))*sq
rt(a)*sqrt((a*sqrt((b^2 - 4*a*c)/a^2) - b)/a)*elliptic_e(arcsin(sqrt(1/2)*x*sqrt((a*sqrt((b^2 - 4*a*c)/a^2) -
b)/a)), 1/2*(a*b*sqrt((b^2 - 4*a*c)/a^2) + b^2 - 2*a*c)/(a*c)) - sqrt(1/2)*(((2*a*b + b^2)*c^2*d - (a*b^2*c +
2*a*b*c^2)*f)*x^4 + (2*a^2*b + a*b^2)*c*d + ((2*a*b^2 + b^3)*c*d - (a*b^3 + 2*a*b^2*c)*f)*x^2 - (a^2*b^2 + 2*a
^2*b*c)*f + (((2*a^2 - a*b)*c^2*d - (a^2*b*c - 2*a^2*c^2)*f)*x^4 + (2*a^3 - a^2*b)*c*d + ((2*a^2*b - a*b^2)*c*
d - (a^2*b^2 - 2*a^2*b*c)*f)*x^2 - (a^3*b - 2*a^3*c)*f)*sqrt((b^2 - 4*a*c)/a^2))*sqrt(a)*sqrt((a*sqrt((b^2 - 4
*a*c)/a^2) - b)/a)*elliptic_f(arcsin(sqrt(1/2)*x*sqrt((a*sqrt((b^2 - 4*a*c)/a^2) - b)/a)), 1/2*(a*b*sqrt((b^2
- 4*a*c)/a^2) + b^2 - 2*a*c)/(a*c)) + 2*(a^2*b*c*e - 2*a^3*c*g - (a*b*c^2*d - 2*a^2*c^2*f)*x^3 + (2*a^2*c^2*e
- a^2*b*c*g)*x^2 + (a^2*b*c*f - (a*b^2*c - 2*a^2*c^2)*d)*x)*sqrt(c*x^4 + b*x^2 + a))/(a^3*b^2*c - 4*a^4*c^2 +
(a^2*b^2*c^2 - 4*a^3*c^3)*x^4 + (a^2*b^3*c - 4*a^3*b*c^2)*x^2)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {d + e x + f x^{2} + g x^{3}}{\left (a + b x^{2} + c x^{4}\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x**3+f*x**2+e*x+d)/(c*x**4+b*x**2+a)**(3/2),x)

[Out]

Integral((d + e*x + f*x**2 + g*x**3)/(a + b*x**2 + c*x**4)**(3/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x^3+f*x^2+e*x+d)/(c*x^4+b*x^2+a)^(3/2),x, algorithm="giac")

[Out]

integrate((g*x^3 + f*x^2 + x*e + d)/(c*x^4 + b*x^2 + a)^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {g\,x^3+f\,x^2+e\,x+d}{{\left (c\,x^4+b\,x^2+a\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x + f*x^2 + g*x^3)/(a + b*x^2 + c*x^4)^(3/2),x)

[Out]

int((d + e*x + f*x^2 + g*x^3)/(a + b*x^2 + c*x^4)^(3/2), x)

________________________________________________________________________________________